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Abstract. The notion of a human value system can be quantified as a cognitive 
map, the dimensions of which capture the semantics of concepts and the associated 
values. This can be done, if one knows (i) how to define the dimensions of the 
map, and (ii) how to allocate concepts in those dimensions. Regarding the first 
question, experimental studies with linguistic material using psychometrics have 
revealed  that  valence,  arousal  and  dominance  are  primary  dimensions 
characterizing human values. The same or similar dimensions are used in popular 
models  of  emotions  and  affects.  In  these  studies,  the  choice  of  principal 
dimensions,  as  well  as  scoring  concepts,  was  based  on  subjective  reports  or 
psycho-physiological  measurements.  Can a  cognitive  map of  human values  be 
constructed  without  testing human subjects?  Here  we show that  the  answer  is 
positive,  using generally  available dictionaries of  synonyms and antonyms.  By 
applying a simple statistical-mechanic model to English and French dictionaries, 
we constructed  multidimensional  cognitive  maps  that  capture  the  semantics  of 
words. We calculated the principal dimensions of the resultant maps and found 
their semantics consistent across two languages as well as with previously known 
main cognitive dimensions. These results suggest that the linguistically derived 
cognitive map of the human value system is language-invariant and, being closely 
related to psychometrically derived maps, is likely to reflect fundamental aspects 
of the human mind.
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Introduction

Neuromorphic  cognitive  map is  a  functional  unit  that  plays  a  central  role  in  the 
Biologically Inspired Cognitive Architecture developed at George Mason University 
(BICA-GMU) by our research team [1-4]. The notion of a cognitive map, however, is 
not  limited to the field of artificial general  intelligence (AGI).  The term “cognitive 
map” had been used in cognitive sciences for several decades with various meanings 
[5, 6]. The modern notion of a cognitive map was introduced by O’Keefe and Nadel [7] 
based on the hippocampal place cell  phenomenon discovered at  that time [8].  This 
notion was subsequently extended to include cognitive mapping of non-spatial features 
of contexts and paradigms, based on the spatial analogy [e.g., 9-12].

In the present work, a  cognitive map is understood as a mapping from a set of 
cognitive representations (e.g. concepts, words) to an abstract continuous metric space, 
such that semantic relations among representations are reflected in geometric relations 
in the indexing space. This intuitive definition unfolds as follows. In a spatial cognitive 



map,  the  metrics  are  proportional  to  the  perceived  distances  between  associated 
landmarks in the physical world. In this case the cognitive map is essentially a model 
of perceived space [7]. Similarly, a temporal cognitive map, if it  were found in the 
brain as a separate functional unit, would be a model of a perceived timeline. Another 
example  of  a  cognitive  map  is  a  color  space,  in  which  locations  correspond  to 
perceived colors [13].

Speaking more generally, we distinguish various kinds of cognitive maps (Figure 
1), based on the semantics they represent (logic, values, feelings, qualia) and on the 
representation systems they map (e.g., one may distinguish contextual and conceptual 
cognitive  maps).  While  the  idea  of  mapping  representations  of  concepts  onto  an 
abstract space is not new [14], cognitive maps beyond spatial and temporal dimensions 
remain unexplored terrain in cognitive neurosciences. How to design a cognitive map: 
its topology, geometry, and the associated semantics? How to allocate representations 
on a map? Can this be done objectively, and/or from the first principles?

Figure  1. Cognitive  maps  are  abstract  metric  spaces  that  reflect  semantics  of  associated  symbolic 
representations. Different kinds of cognitive maps may represent different aspects of semantics and/or map 
different kinds of representations.

Here we focus on a particular kind of cognitive maps: conceptual value maps. We 
believe that the notion of a human value system can be made more precise and more 
useful when it is represented with a cognitive map, the dimensions of which capture the 
values of concepts. This kind of a map can be constructed, if one knows how to define 
the dimensions of the map and how to allocate concepts in them.

The idea of the approach pursued in the present study is to use linguistic corpora as 
a source of data about the semantics of concepts (represented in this case by words). 
The hope is that self-organization may help us find the principal dimensions and to 
allocate concepts automatically. We expect that the problems of cognitive map creation 
can  be  solved  in  this  case  using  available  linguistic  data.  Therefore,  we  select  a 
dictionary  of  words  as  our  study  material,  keeping  in  mind  that  words  represent 
concepts, and concepts are associated with values.

Simple as it is, the idea of applying the notion of a cognitive map to linguistic 
corpora  appears  to  be  unexplored,  while  multidimensional  metrics  were  used  to 
characterize  semantics  of  words,  concepts  and  feelings  in  many  cognitive  studies. 
Examples  include theoretical  models  of  emotions [e.g.,  15,  16]  that  go along with 
experimentally  derived  psychometric  dimensions  of  words  [17,  18]  and  partially 
overlap with abstract studies of “quality dimensions” [14]. All of the above influenced 
modern cognitive architecture designs that make use of principal cognitive dimensions 
(see, e.g., Adams, this volume). In the aforementioned experimental studies, the choice 
of principal dimensions, as well as related scoring of concepts, was based on subjective 



reports or psycho-physiological measurements. Can a cognitive map of human values 
be  constructed  without  testing  human  subjects?  Here  we  show that  the  answer  is 
positive, using generally available dictionaries of synonyms and antonyms. 

Figure 2. A bird view of BICA-GMU, as described in [2].

The present study of cognitive maps is best framed in the context of our cognitive 
architecture design:  BICA-GMU (Figure 2).  Information processing in  BICA-GMU 
occurs at a higher symbolic level, based on new building blocks called “a schema” and 
“a mental state” [2]. Intuitively, the notion of a schema can be associated with that of a 
concept, while the notion of a mental state can be associated with that of a context. 
Multiple instances of schemas and mental states fill in the three main memory systems 
in  BICA-GMU:  working,  semantic  and  episodic  memory.  When  new  information 
comes to the system through the input-output buffer, it gets represented by instances of 
schemas. This is done with the help of procedural memory that "knows" what schemas 
should be used for each given kind of input. The rest of information processing does 
not have a pre-defined solution and may involve search of the entire semantic and/or 
episodic memories at each step. Thus, filtering of the exploding tree of possibilities 
becomes  vital  for  successful  operation  of  BICA-GMU in  practical  scenarios.  This 
filtering is one of the main functions of neuromorphic cognitive maps in BICA-GMU. 
In general, it can be understood as a task to suggest a preferred choice of a schema that 
will be used by the architecture at  the next step. Filtering by a cognitive map also 
constrains the semantics of admissible schemas to a narrow domain in the cognitive 
space. This mechanism could be used, e.g., in analogy search or in classification of 
memories. Another aspect of the same cognitive map function is evaluation (how good, 
how plausible, how exciting, etc.) of a given concept. In this sense, cognitive maps 
provide an otherwise undefined “metric system” in the field. While the cognitive map 
is expected to develop its metrics through self-organization, the primary values for a 
limited number of selected concepts need to be provided by an external source. In the 
case of BICA-GMU they are provided by the reward and punishment system (Figure 
2).



1. Materials and Methods

1.1.Linguistic Corpora

The study presented here was conducted using two linguistic corpora: dictionaries of 
synonyms and antonyms available as parts of the thesaurus in Microsoft Word 2003 
(MS  Word).  The  two  corpora  apparently  have  independent  origin1 and  different 
characteristics.  The  total  size  of  each  of  them is  above  200,000  entries.  The  core 
dictionaries used in this study and the corresponding matrices W of synonym-antonym 
relations were extracted automatically following the algorithm described below.

Figure 3. Extraction of the dictionary from MS Word.  A: English,  B: French. Abscissa: the word that is 
being processed. Ordinate: the number of unprocessed words in the retrieved list at the current step.

1.1.1.Extraction of the Core Dictionary

The following algorithm was used to extract a core dictionary from MS Word.
Step 1: Start with one word in the dictionary. Take the next word from the dictionary. 

Retrieve  its  synonyms  and  antonyms  from  MS  Word.  Merge  them  into  the 
dictionary (avoid repetitions). Repeat until the retrieved dictionary is processed.

Step 2: Eliminate duplicates that were not detected during Step 1. Recursively remove 
all  words with less than two connections (see Figure 4 A).  The remainder by 
definition constitutes the “core” dictionary. Symmetrize the relation matrix W by 
making all synonym and antonym links bi-directional2.

The starting word for English was “first”, for French “premier”. The resultant sets of 
words never changed by more than a few words when we tried different starting words.

1.1.2.Characteristics of the Core Dictionaries

The extracted English core has 8,236 words. An average word in it has 3.0 synonyms 
(1.8  before  symmetrization)  and  1.4  antonyms  (0.8  before  symmetrization).  The 

1 English thesaurus was  developed for  Microsoft  by Bloomsbury Publishing,  Plc.  French thesaurus is 
copyrighted by SYNAPSE Development, Toulouse, France.

2 Symmetrization is necessary for the energy function (*) to be Hermitean, in which case the relaxation 
process (**) converges to a fixed point rather than a cycle.



extracted French core has 87,811 words. An average word in it has 6.4 synonyms (3.9 
before  symmetrization)  and  7.5  antonyms  (3.9  before  symmetrization).  The  total 
average number of connections (degree) per word is 4.3 for English core and 14.0 for 
French core. In each case, the extracted core is a small part of the entire thesaurus.

The graph of synonym-antonym links for the English core is nearly scale-free [19] 
(Figure 4, cf. [20]), but cannot be used as a cognitive map. For example, considering 
the graph of English synonyms only, one can see that distances on the graph (measured 
in the number of links of the shortest path) are semantically misleading: 

o Average distance between words = 6.7
o Distance (true, false) = 8
o Distance (big, small) = 5
o Distance (happy, satisfaction) = 7
o Distance (cloth, dress) = 5

This happens because only very few of all  synonyms and antonyms of a given 
word are actually listed in the corpus (the graph is very sparse).

Figure 4. Post-processing of the extracted dictionary.  A: The notion of a core dictionary. Only nodes that 
have at least two connections to other core nodes are left in the core. Links are bi-directional and could be 
synonym-synonym or antonym-antonym connections. B: Scaling law analysis [19] shows that the extracted 
English core dictionary forms a nearly scale-free graph, which is typical for word-association networks [20].

1.2.Statistical-Physics-Inspired Approach to Self-Organization of a Cognitive Map

The idea of our approach to constructing a cognitive map by self-organization is to 
represent the evolving cognitive map by a statistical mechanical model and to find its 
ground state  that  is  expected to  capture the  semantics.  Therefore,  the heart  of  our 
method is the following algorithm, which was designed through trial and error3.

1. Randomly allocate N words as “particles” (vectors) in R100 in a unit ball.
2. Arrange for attraction between synonyms and repulsion among antonyms 

by defining an energy function of the system based on the relation matrix W:

3 We tried various topological embeddings and constraints: a ball, a sphere, a torus, an ellipsoid, with the 
dimensionality ranging from 1 to 100, and selected an optimum.
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4 , x∈RN⊕ R100 .



(1)

3. Simulate thermodynamical relaxation of the system to its ground state (106 
iterations) based on the following stochastic equation (  is a Gaussian noise):

(2)

4. Rotate the resultant distribution in R100 to its principal components (PCs).
5. Identify semantics of the coordinates (PCs) by sorting words along them.

The symmetric relation matrix W in (1) has “+1” entries for pairs of synonyms and 
“–1” entries for pairs of antonyms, all other matrix elements are equal to zero. During 
the construction of  W,  different forms of the same word were treated as synonyms. 
Convergence  of  (2)  to  a  ground  state  was  assessed  by  measuring  the  maximal 
displacement of any “particle” in one step of simulated dynamics.

1.3.Psychometric Data Used in This Study

In the analysis of our results we used the Affective Norms for English Words (ANEW) 
database [21] developed by the Center for the Study of Emotion and Attention (CSEA) 
at the University of Florida. This database contains 1,034 affective English words. The 
ANEW database was created using the Self-Assessment Manikin to acquire ratings of 
pleasure, arousal, and dominance. Each rating scale in ANEW runs from 1 to 9, with a 
rating of 1 indicating a low value (low pleasure, low arousal, low dominance) and 9 
indicating a high value on each dimension. The ANEW database was kindly provided 
by Dr. Margaret M. Bradley (University of Florida, CSEA).

1.4.Software and Hardware

Algorithms were implemented using XEmacs and GNU C on Dell Optiplex GX620 
running Fedora Core 5 Linux. Data preparation and analysis were performed using 
Microsoft  Office  2003  Professional  Enterprise  Edition  on  Dell  Optiplex  GX620 
running Windows XP Pro, also using Octave and Matlab 7.0.

2. Results

In all our numerical experiments, 106 iterations (and 105 iterations in most cases) were 
sufficient  for  convergence  of  the  system to  its  ground state  (assessed  as  described 
above). In the numerical implementation of (2), the time step was ∆t = 0.001, the initial 
noise  standard  deviation  <η2>1/2 was  0.5,  and  its  value  decreased  inversely 
proportionally with time. Our key findings are presented in Figures 5-7 and Tables 1-2.

ẋ i=−∂ H
∂ x i

ηi t  , 〈η  t 2〉 0 .



Figure 5.  The English core in its “ground state”.  A: The “banana shape” of a final distribution of English 
words (visible after  rotation to the main PC coordinates).  The two fuzzy clusters and the corresponding 
horizontal  dimension  separate  positive  and  negative  values  (valence).  The  vertical  axis  corresponds  to 
another cognitive dimension: “calming vs. exciting” (arousal). D=100, H(x) is given by (*) in Section 1.2. B: 
Variances of the first ten PCs (Table 1). PCs are sorted by their variance.

Table 1. Sorted lists for the English core in a ground state. 10 PCs, 5+5 elements of each list. The order 
number and the variance of each PC are given in the left column.

PC # & 
Variance

Starting from the one end of the list: Starting from the other end of the list:

1: 2.54 increase, well, rise, support, accept… drop, lose, dull, break, poor…

2: 0.95 calm, easy, soft, gentle, relaxed… difficult, harsh, hard, trouble, twist…

3: 0.51 start, open, fresh, begin, release… close, delay, end, finish, halt…

4: 0.33 thin, edge, use, length, wet… center, save, deep, dry, middle…

5: 0.15 essential, need, poverty, basic, 
necessary…

back, surplus, later, wealth, unnecessary…

6: 0.13 pull, private, receive, owe, keep… dig, push, channel, ditch, national…

7: 0.04 over, top, on top of, above, impose… base, under, below, underneath, beneath…

8: 5.6e-8 old, mature, adult, aged, previous… young, child, dig, immature, new…

9: 1.7e-9 normally, carefully, modestly, frequently, 
often…

unusually, extremely, rarely, strangely, 
carelessly…

10: 

6e-10

personally, carefully, for myself, 
amazingly, thoughtfully…

universally, carelessly, normally, generally, 
usually…

The shape of resultant distributions (Figures 5, 6) was found independent of the 
initial conditions and the realization of the stochastic noise η, which was sampled from 
a  normal  distribution.  Interestingly,  the  geometric  properties  of  shapes  of  the final 
distributions for the two languages are similar (cp. Figure 5 A and Figure 6 A): these 
are  bimodal,  “banana-shape”  distributions,  each  exhibiting  two  dense  clusters 
connected by a curved “neck”, surrounded by a diffuse “fringe”.



Figure 6. The French core in its “ground state”.  A: PC #1 vs.  PC #2. The “banana shape” distribution 
resembles that of Figure 5 A. B: PC #1 vs. PC #3. Like in the case of Figure 5, the distribution is bimodal 
with two clusters corresponding to positive and negative values (as found by examining the cluster elements).

Another interesting detail is that the PC amplitude is quickly decaying with the PC 
number (Figure 5 B and Table 1, left column), which may be a consequence of the fact 
that  the matrix  W is  very sparse – or  an indication that  there are indeed very few 
cognitive dimensions in the corpus. Consistently with the first interpretation, the decay 
is slower, yet also very strong, for the French core (not shown here).

The findings of similarities in geometry extend to the semantics of distributions: 
Tables 1, 2 present the end-portions of sorted lists of words (words were sorted by their 
PC scores). Table 1 suggests that there are definite semantics associated with each of 
the  first  ten PCs:  an  intuitive  impression  that  is  difficult  to  quantify.  Table  2  was 
prepared as follows. Each French sorted list was subjected to automated translation into 
English, after which duplicate words in it were removed, and then both lists within 
each  row  were  truncated  to  an  equal  size.  Observed  semantic  correlations  are 
significant.

Table 2. Top portions of sorted lists for each PC: top three dimensions for two languages. Words that are 
common across cells within each row are typed in boldface. 

PC #  English: 8,236 words total core size  French: translated (87,811 words total core size)



1 increase, well, rise, support, accept, clear, 
improve, right, continue, direct, good, make, 
respect, honor, happy, secure, order, 
understanding, fix, power, bright, present, 
definite…

happy, agreement, stable, joined together, 
delighted, approve, net, some, honest, rich, added, 
increased, pleasant, sincere, union, frank, fix, 
favor, praise, optimist, accept, abundance, help…

2 calm, easy, soft, gentle, relaxed, light, ease, 
simple, quiet, soothe, smooth, empty, mild, 
weak, gently, peaceful, compliant, lenient, 
pale…

calm, modest, discrete, simple, subjected, thin, 
alleviated, softened, flexible, sober, moderate, 
soft, immobility, measured, silence, humble, 
reserved, simplicity, obeying

3 start, open, fresh, begin, release, original, 
new, reveal, speed up, free…

release, deliver, freedom, yield, open, leave, free, 
disencumbered, discovered, dispersion, broad…

2.1. Main Result:  Cross-Language Semantic Consistency of the Cognitive Map 
Structure

Each of the three top portions of paired lists shown in Table 2 has at least three words 
in common with its counterpart. All words within each row have similar or closely 
related semantics. Semantic similarities within and across columns of the table seem to 
be at the same level of strength; however, an objective measure would be necessary to 
quantify  this  impression.  How  can  we  estimate  the  statistical  significance  of  co-
occurrence of the same words in top portions of two lists in each row of Table 2? Here 
is one easy way to estimate p-values from above. Given the size of the English core, 
and assuming that each French-to-English translation is a “blind shot” into the English 
core (null-hypothesis), we can estimate the probability to find one and the same word 
in top-twelve portions of both lists:  p ~ 2*12*12 / 8,236 = 0.035 (we included the 
factor 2, because there are two possible ways of aligning the lists with respect to each 
other4). Therefore, the p-value of the case of word repetition that we see in Table 2 is 
smaller  than  0.035,  at  least.  In  conclusion,  we  have  found  significant  correlations 
among sorted lists across languages for each of the three PCs. It is also remarkable that 
there are no common words shared by any two rows in Table 2.

2.2.Testing the Constructed Cognitive Map: Synonym Selection with a Bias

Our analysis so far was focused on extremities of the emergent cognitive maps. It is 
natural to ask whether words are organized consistently in the middle of a cognitive 
map. To address this question, a simple experiment was conducted. The algorithm was 
the  following.  (1)  Select  a  word  from  the  core:  e.g.,  “problem”.  (2)  List  all  its 
synonyms. (3) Sort them along a given dimension: e.g., PC #1. (4) Take one word from 
the top of the list and one word from the bottom. Below is an example of an outcome.

From the top: Problem  exercise.

From the bottom: Problem  obstacle.

Intuitively,  the reader  would probably agree that  “exercise”  is  a  more  positive 
choice than “obstacle”: when I am in a positive mood, I am more likely to take a new 

4 The “top end” of each English list was in effect selected at random, but the “top end” of the counterpart  
French list was selected in order to match the semantics of the English list: here we had two possibilities and 
selected one of them, for each PC.



encountered problem as an exercise rather than an obstacle. This observation indicates 
that the cognitive map is consistently organized within itself. How can one quantify the 
consistency of its internal organization? We address this topic immediately below.

2.3.Analysis by Comparison with Psychometric Data

In order to further validate our findings, we compared our principal dimensions found 
in the English core against the dimensions of the ANEW dataset:  pleasure5,  arousal 
and dominance. The ANEW list contains 1,034 words, 479 of which were found in the 
English core. The scatter plot of our PC #1 versus the first dimension of ANEW, which 
is  the  mean  value  of  pleasure,  is  represented  in  Figure  7.  The  plot  shows  strong 
correlation, with similar bimodal distributions in both PC #1 and the ANEW-pleasure 
dimensions. Pearson correlation coefficient r = 0.70.

Figure  7. Scatter  plot  demonstrating  strong  correlation  of  PC #1  with  the  first  dimension  of  ANEW: 
pleasure. The dashed line is a linear fit. The two clusters (“positive” and “negative”) are separated in each 
dimension.

How can we match PCs with ANEW dimensions? Our correlation analysis shows 
that PC #1 is the best match (i.e., most highly correlated among all PCs) for ANEW-
pleasure, and vice versa (r = 0.70,  p = 10-70). PC #2 is the best match for ANEW-
arousal (r = 0.32, p = 10-12). Finally, ANEW-dominance among all ANEW dimensions 
is the best match for our PC #3 (r = 0.25,  p = 10-7); however, PC #1 and ANEW-
dominance are correlated stronger (r = 0.64).

Why do arousal and dominance have so low (albeit significant) correlations with 
the  matching  PCs?  One  possible  answer  is  that  semantics  of  ANEW-arousal  and 
ANEW-dominance is different from the semantics of our PC #2 and PC #3. Indeed, in 
the given subset of 479 words that are common between the English core and ANEW, 

5 In the ANEW dataset, the first dimension is called “pleasure”, while in some studies based on ANEW it is 
called “valence”, consistently with the names of Osgood’s dimensions [17].



ANEW dimensions #1 (“pleasure”) and #3 (“dominance”) are strongly correlated (r = 
0.86). On the other hand, our PC #1 and PC #3 are not strongly correlated (r = 0.13), 
because PCs were calculated using principal component analysis (hence they could be 
expected  to  be  independent).  Debates  continue  in  the  literature  as  to  whether 
dominance should be considered an independent dimension [22].

3. Discussion

In the present work, by applying a simple statistical-mechanic model to English and 
French dictionaries, we constructed multidimensional cognitive maps that capture the 
semantics of words. We calculated the principal dimensions of the resultant cognitive 
maps (the PCs) and found their  semantics  consistent  across  two languages.  In  this 
context it would be interesting to analyze other languages. Our preliminary results of a 
similar study conducted with a Spanish dictionary of synonyms and antonyms (not 
reported here) support all our key findings described above, including semantics of the 
first three PCs.

 The principal dimensions that we found appear to be approximately semantically 
consistent with the previously known dimensions (“affective dimensions” or “Osgood’s 
dimensions”)  determined  psychometrically,  in  experimental  studies  with  human 
subjects (e.g. [17, 18] and followers): those studies have revealed that valence, arousal 
and  dominance are  the  primary  dimensions  characterizing  human  values.  In  this 
context, it may not be a surprise to learn that modern theoretical models of emotions 
also  use  a  similar  or  closely  related  set  of  principal  dimensions  [16,  23].  In  the 
foregoing experimental studies, in contrast with our study, the initial choice of the set 
of  dimensions  and respective scoring  concepts,  was based on subjective  reports  or 
psychophysiological measures (SCR, HR, EEG, etc.). In the present work we show that 
the same or similar dimensions can be found, and a cognitive map of human values can 
be constructed, without testing human subjects, but using linguistic corpora instead.

At the same time, the match between our PCs and ANEW dimensions labeled by 
words “arousal” and “dominance” is  not perfect. We surmise that  semantics of our 
extracted  dimensions  cannot  be  characterized  completely  by  a  single  word  (e.g., 
“pleasure”, “arousal”, “dominance”) or a pair of antonyms. One may need the entire 
cognitive map to define semantics of dimensions of this map precisely; however, an 
approximate definition could be based on a small set of antonym pairs, selected based 
on their map coordinates, degrees and frequencies. This will be done elsewhere.

Nevertheless, results of comparison with ANEW are surprising. We had no a priori 
reason  to  believe  that  ANEW-dimension  #1  (pleasure)  and  ANEW-dimension  #2 
(arousal)  should correspond to  our  PC #1 and PC #2.  The fact  that  they do show 
significant semantic correlations and make best matches with those counterparts is in 
and by itself intriguing and worth attention. It suggests that the linguistically derived 
cognitive map dimensions found in this study are not only language-invariant. They 
appear to be invariant at a broad scale of methodologies, across fields of science, and 
therefore they are likely to reflect fundamental aspects of human cognition. Extending 
this logic, one may expect similar results when the same method is applied to other 
representation systems: corpora, ontologies, databases and indices of various nature, as 
long as the notions of similarity and contrast can be defined for their elements. The 
question of whether the same semantics will hold for the first two or three principal 
dimensions in those cases remains open.



The possibility to construct a complete cognitive map of natural language based on 
semantic differences and similarities among words opens many important questions. 
What is the number of independent dimensions of the conceptual value map (cf. [24])? 
Which of the previous intuitively defined dimensions are orthogonal, and which would 
be  represented  as  linear  combinations  of  others?  What  is  a  canonical  choice  of  a 
coordinate system, if  this notion makes sense,  and what would be the semantics of 
those  special  coordinates?  Would  all  answers  to  the  above questions  be  consistent 
across individuals, social groups, languages – or be individual-specific? Would they be 
extensible beyond human cognition:  to robots  and other  forms of  intelligence? We 
believe  that  answering  these  questions  would  greatly  benefit  modern  science  and 
technology,  because  understanding  the  human  value  system  and  the  degree  of  its 
logical necessity is a key to understanding the laws of cognitive explosion on Earth.

Viewing the findings of the present work in the context of cognitive architecture 
design,  we can imagine an  artificial  cognitive  system that  learns  or  generates  new 
concepts and assigns values to them “on the fly”: i.e., in the process of (unsupervised) 
learning.  This  may  be  possible,  as  soon  as  the  system  “knows”  how  to  identify 
synonyms and antonyms of a new concept among familiar concepts that are already 
allocated on the cognitive map. Given this strategy, and assuming that the system is 
capable of cognitive growth6, we can imagine as the system will gradually develop a 
personal system of higher values and ideals starting from primitive notions of reward 
and punishment. This capability could be vital for cognitive systems growing up in 
social embedding and intended to become human partners.

What else could cognitive maps be used for in a cognitive architecture? Here is an 
abridged list  of  their possible  functions:  filtering of  search trees,  finding analogies, 
satisfying  semantic  constraints,  building  systems  of  values  for  new  domains  of 
knowledge,  bootstrapping  development  of  higher  values  and  goals,  suggesting  a 
reasonable commonsense initiative, classification of memories and strategic retrieval of 
episodic  memories,  guidance  in  imagery  and  decision  making,  etc.  In  addition, 
linguistic cognitive maps may find applications elsewhere:  intuitive Internet  search, 
etc.

In summary, the main finding of this work is the possibility to extract language-
invariant  dimensions  of  the  human  value  system  from  linguistic  corpora,  using  a 
statistical-mechanic approach. Similar results  are expected with other representation 
systems and databases, including AGI. The principles of map construction, as well as 
the map itself extracted from the human language, can be used in a general-purpose 
self-aware cognitive architecture in order to enable its autonomous cognitive growth.

Acknowledgments 

We are grateful to Dr. Kenneth A. De Jong for valuable discussions and interest to this 
work.  This  work is  supported by the  DARPA IPTO BICA Grant  “Integrated Self-
Aware Cognitive Architecture”.

6 Cognitive growth is understood in modern artificial intelligence as multi-level bootstrapped learning, 
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